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Abstract

The algebraic multigrid approach known as smoothed aggregation is very efficient at solv-

ing systems that arise from elasticity problems [1]. In order to construct an efficient algebraic

multilevel method, a multigrid solver should be provided with a small set of vectors that repre-

sent the error components that are difficult to resolve. It is well-known [2, 5] that for linear elas-

ticity problems, these components correspond to the the so-called rigid body modes (RBMs).

The present document summarizes some new development within the Albany code base that

has enabled the application of algebraic multigrid preconditioners from the ML package [2] of

Trilinos to mechanics problems implemented within Albany via a new function that calculates

the RBMs using information about the problem’s underlying mesh. The performance of these

preconditioners is evaluated on four problems: a 3D static elasticity problem, a 3D non-linear

elasticity problem, a 3D thermo-elasticity problem, and a 3D thermo-poro-plasticity problem.

The tests reveal the superiority of the ML preconditioners over ILU preconditioners from the

Trilinos Ifpack package [4] for mechanics problems in Albany.
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1 Introduction

The basic idea of a multigrid solver is to accelerate the convergence of an iterative method applied

to a problem arising from the discretization of a partial differential equation (PDE) by solving the

problem on a hierarchy of “coarse” grids, and interpolating between these “coarse” grids and the

original “fine” grid. A popular efficient multigrid approach – one that is implemented within the

ML package of Trilinos [2] – is smoothed aggregation. In smoothed aggregation, a grid transfer

operator is constructed from a seed vector (or set of seed vectors), following the aggregation of the

vertices of a matrix graph (coarsening). This aggregation (or coarsening) and seed vector informa-

tion is used to create a tentative interpolation operator, one that by construction will interpolate the

seed vectors perfectly. Following aggregation, smoothers are applied on each level to damp out

errors in the solution. It is well-known [2] that errors in the direction of eigenvectors of the dis-

cretization operator corresponding to small eigenvalues are difficult to smooth. Hence, a common

strategy is to select as the seed vectors the vectors in the nullspace or near-nullspace of a problem’s

discretization matrix.

For some classes of problems, the constant vectors used as seed vectors by ML by default are not

necessarily in the nullspace of the problem operator, and therefore not the best choices for the seed

vectors used in smoothed aggregation. A classical example of such a problem is elasticity. For

elasticity, it is well-known that the nullspace of the operator is spanned by a floating structure’s

rigid body modes (RBMs). These modes are in effect the directions in which a body that is not ad-

equately supported can translate or rotate as a whole without deformation. For three-dimensional

(3D) elasticity, a floating structure has six RBMs (three translational and three rotational vectors);

for two-dimensional (2D) elasticity, a floating structure has three RBMs (two translational and one

rotational vectors); for one-dimensional (1D) elasticity, a floating structure has just one (transla-

tional) RBM. To ensure good performance of an ML preconditioned iterative method applied to

solve discretized elasticity equations, it is important that the RBMs be explicitly provided to the

multigrid solver (ML).

The present document summarizes the results of a numerical study that evaluates the relative per-

formance of Ifpack and ML preconditioners for mechanics problems implemented within the Al-

bany code base. To enable proper computation of seed vectors for ML, the following function was

developed within Albany:

Albany ML Coord2RBM(int Nnodes, double x[], double y[], double z[], double

rbm[], int Ndof, int NscalarDof, int NSdim)

The remainder of this document is organized as follows. Section 2 describes the implementation of

the Albany ML Coord2RBM function for aiding the construction of ML preconditioners for mechan-

ics problems implemented within Albany. The performance of these preconditioners is evaluated

in Section 3 on four mechanics problems: a 3D static elasticity problem, a 3D non-linear elasticity

problem, a 3D thermo-elasticity problem, and a 3D thermo-poro-plasticity problem. Performance

comparisons are made to ILU preconditioners from the Ifpack package. Conclusions are offered

in Section 4.
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2 Calculation of Rigid Body Modes (RBMs) for Mechanics

Problems in Albany

The Albany classes have been designed to communicate automatically the correct seed vector

information to the multigrid solver ML for each problem implemented within the Albany code

base. The virtual function:

getRBMInfoForML(int numPDEs, int numElasticityDim, int numScalar,

int nullSpaceDim)

has been added to the Albany::AbstractProblem class (src/problems/Albany AbstractProb-

lem.cpp). The number of elasticity equations (numElasticityDim) is set to zero by default. If

an ML preconditioner is selected in the Albany .xml input file and numElasticityDim is set to

zero, the ML preconditioner will be created using the default constant seed vectors. For elasticity

problems implemented with the Albany Laboratory for Computational Mechanics (LCM) suite

(src/LCM/problems), numElasticityDim is overwritten from its default value of zero. This in-

teger parameter is set to the number of elasticity equations being solved (1 for 1D problems, 2 for

2D problems, and 3 for 3D problems). For some problems within the LCM suite, the elasticity

equations are coupled to one or more PDEs. The integer numScalar specifies the number of PDEs

coupled to elasticity for a given problem. For instance, for the thermo-elasticity problem, the elas-

ticity equations are coupled to a single PDE, namely the heat equation, so numScalar = 1. For

the thermo-poro-plasticity problem, which couples balance of linear momentum, mass and energy

(used to model solid deformation) to fluid and thermal diffusion, numScalar = 2.

Table 1. Inputs and outputs to Albany ML Coord2RBM function

Name Description Details

Inputs

Nnodes # nodes in physical mesh −

x, y, z arrays holding nodal coordinates −

Ndof total # PDE DOFs per node
= # elasticity DOFs per node

+NscalarDof

NscalarDof # scalar (non-elasticity) DOFs per node −

NSdim dimension of elasticity nullspace =







1, for 1D elasticity

3, for 2D elasticity

6, for 3D elasticity

Outputs rbm array populated with RBMs
size: Nnodes*Ndof*(NSdim

+ NscalarDof)

For elasticity problems (numElasticityDim 6= 0) solved with an ML preconditioned iterative

method, the ML seed vectors are computed via the following newly-developed function:

Albany ML Coord2RBM(int Nnodes, double x[], double y[], double z[], double

rbm[], int Ndof, int NscalarDof, int NSdim)
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Table 1 summarizes the input and output parameters to this function. The scalar input parameters

in Table 1 are generated for each problem implemented in the Albany code base by an afore-

mentioned function getRBMInfoForML. The vector input parameter, namely the arrays contain-

ing the x–, y– and z–coordinates of the mesh are obtained through another new Albany function,

setCoordinatesForML, implemented in Albany SolverFactory.cpp.

Illustrative example of RBM calculation:

As an example, the seven R
7 nullspace vectors corresponding to each coordinate for a 3D elasticity

problem discretized with a shell element coupled to a scalar PDEs is demonstrated in Table 2.

Table 2. Nullspace vectors for 3D elasticity shell problem cou-

pled to a scalar PDE

translations (elasticity) scalar rotations around (elasticity)

x y z eq. #1 x y z

x–direction (elasticity) 1 0 0 0 0 z −y

y–direction (elasticity) 0 1 0 0 −z 0 x

z–direction (elasticity) 0 0 1 0 y −x 0

scalar eq. #1 0 0 0 1 0 0 0

x–rotation (elasticity) 0 0 0 0 1 0 0

y–rotation (elasticity) 0 0 0 0 0 1 0

z–rotation (elasticity) 0 0 0 0 0 0 1

The nullspace vectors for 3D elasticity with bricks would be the same as Table 2 but with the last

three rows removed. The nullspace vectors for 2D elasticity would be generated by removing also

remove the third row and columns three, five and six from Table 2. As expected, generating the

nullspace vectors for 1D elasticity would require removing all but rows one and four and columns

one and four in the table.
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3 Numerical Results

This section summarizes the results of a study aimed at evaluating the relative performance of

different preconditioners available through the Trilinos Ifpack and ML packages for various me-

chanics problems implemented within the Albany LCM suite. Seven basic preconditioner types are

considered: four Ifpack preconditioners and three ML preconditioners (Table 3). The Ifpack pre-

conditioners are effectively ILU preconditioners, and differ in the overlap and level-of-fill

options. The ML preconditioners are algebraid multi-grid preconditioners based on three default

preconditioner types available in the ML package: SA (classical Smoothed Aggregation), DD (clas-

sical smoothed aggregation based on two-level Domain Decomposition), and DD-ML (three-level

algebraic Domain Decomposition). For a detailed discussion of these Ifpack and ML options, the

reader is referred to the Ifpack and ML user guides, [4] and [2] respectively. The ML precondi-

tioners all employ the matrix repartitioning option available through the Trilinos Zoltan package.

Essentially, repartitioning uses information about the mesh coordinates to perform dynamic load-

balancing of coarse-level matrices in the multigrid preconditioner. With repartitioning, message

passing latency on the coarse level can be improved, and the well-known problem of the coarsening

rate dropping as the number of unknowns per processor becomes small can be avoided.

Table 3. Summary of preconditioners evaluated

Preconditioner # Type Parameters

1

ifpack

overlap = 1, level-of-fill = 1

2 overlap = 2, level-of-fill = 1

3 overlap = 1, level-of-fill = 2

4 overlap = 2, level-of-fill = 2

5

ML

default type = SA

6 default type = DD

7 default type = DD-ML

The following subsections summarize the performance results of the ML preconditioners for four

benchmark problem: a 3D static elasticity problem, a 3D non-linear elasticity problem, a 3D

thermo-elasticity problem, and a 3D thermo-poro-plasticity problem. Three mesh resolutions h are

considered. For the first three problems, the mesh resolutions are: h = 50 (50×50×50 element

mesh), h = 100 (100×100×100 element mesh), h = 200 (200×200×200 element mesh). For

the final problem, the mesh resolutions are: h = 25 (25× 25× 25 element mesh), h = 50 (50×

50× 50 element mesh), h = 75 (75× 75× 75 element mesh). All meshes are comprised of 3D

brick elements generated using the Sierra Toolkit (STK). For the thermo-elasticity problem, the

governing equations are the elasticity equations coupled to a scalar head equation (numScalar

= 1). For the thermo-poro-plasticity problem, equations for the balance of linear momentum,

mass and energy (used to model solid deformation) are coupled to equations of fluid and thermal

diffusion (numScalar = 2). For all problems, Belos total linear solve and total preconditioner

creation times1 for each preconditioner considered are reported for each problem and all three

1Included in the total linear solve time.

10



mesh sizes considered. The iterative method employed for the linear solves was preconditioned

GMRES.

3.1 3D Static Elasticity

The 3D static elasticity problem considered here is both stationary and linear. Figure 1 reports

the total linear solve and total preconditioner creation times for the smallest static elasticity prob-

lem considered, solved on a 50× 50× 50 STK mesh. For this mesh resolution, the linear solver

converged and the correct solution was obtained with all seven preconditioners considered. The

reader may observe by examining Figure 1 that the linear solves are at least five times faster with

an ML versus an Ifpack preconditioner. Figure 2 reports the total linear solve and total precon-
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Figure 1. 3D Static Elasticity: Ifpack vs. ML preconditioners

with Zoltan repartitioning

ditioner creation times for the static elasticity problem on all three mesh resolutions considered.

Results in this figure are not shown for the Ifpack preconditioners because, with this choice of

preconditioner, the linear solver failed to converge and an incorrect solution was obtained.

3.2 3D Non-linear Elasticity

Figure 3 reports the total linear solve and total preconditioner creation times for the non-linear elas-

ticity problem on all three mesh resolutions considered. As for the static elasticity problem posed

on the finer meshes, the linear solver fails to converge with the choice of an Ifpack preconditioner.

Consequently, the non-linear solver fails to converge, and an incorrect solution is obtained.
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Figure 2. 3D Static Elasticity: ML preconditioners with Zoltan

repartitioning
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Figure 3. 3D Non-linear Elasticity: ML preconditioners with

Zoltan repartitioning

3.3 3D Thermo-elasticity

The third problem considered is the so-called thermo-elasticity problem. The equations being

solved are 3D elasticity equations coupled to a scalar heat equation. As for the static elasticity
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Figure 5. 3D Thermo-elasticity: ML preconditioners with Zoltan

repartitioning

problem, the solvers converged with the choice of an Ifpack preconditioner on the coarsest mesh

considered (Figure 4). For this mesh resolution, there is only a slight decrease in total linear solve

time with the choice of an ML preconditioner over the Ifpack preconditioner with level-of-fill

and overlap both set to 1. The ML preconditioners are nonetheless recommended, as the linear
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solver fails to converge with an Ifpack preconditioner on the two finer mesh resolutions (Figure

5).

3.4 3D Thermo-poro-plasticity

The final problem considered is the 3D thermo-poro-plasticity problem. For this problem, equa-

tions for the balance of linear momentum, mass and energy (to simulate solid deformation) are

coupled to equations for fluid and thermal diffusion. Coupling terms are then added to the three

residual equations (linear momentum, mass and energy) so that the fully coupled system can be

solved monolithically. For more information on the details of the thermo-poro-plasticity prob-

lem, the reader is referred to [3]. Total linear solve times and preconditioner creation times for

this problem are reported in Figure 6. The reader can observe that the non-linear solver fails to

converge if an Ifpack preconditioner is employed to solve the linear systems arising within each

non-linear step. In contrast, the solver converges to the correct solution if the linear systems are

preconditioned with an ML preconditioner.

1 2 3 4 5 6 7 8
400

600

800

1000

1200

1400

1600

Preconditioner #

N
O

X
 M

ea
n 

Li
ne

ar
 S

ol
ve

 T
im

e 
(s

) 
ov

er
 P

ro
cs

ThermoPoroPlasticity 3D Problem (ML with Zoltan repartitioning)

 

 

FAILED TO CONVERGE!

25x25x25 elements (total lin solve)
25x25x25 elements (total lin - prec creation)
50x50x50 elements (total lin solve)
50x50x50 elements (total lin - prec creation)
75x75x75 elements (total lin solve)
75x75x75 elements (total lin - prec creation)

Figure 6. 3D Thermo-poro-plasticity: ML preconditioners with

Zoltan repartitioning
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4 Conclusions

A new capability that has enabled the application of algebraic multigrid preconditioners from the

ML package [2] of Trilinos to mechanics problems implemented within the Albany code base is

described. The new development within Albany focuses around the efficient implementation of

a function that calculates the elasticity rigid body modes (RBMs) using information about the

problem’s underlying mesh. These modes represent the error components that are difficult for a

multigrid solver applied to elasticity problems to resolve. The RBM calculation function is ex-

tended to provide the multigrid solver with the proper set of seed vectors for the more complicated

case when the problem of interest involves elasticity equations coupled to one or more additional

PDEs. The performance of the ML preconditioners constructed using these seed vectors is evalu-

ated on four problems within the Albany Laboratory for Computational Mechanics (LCM) suite.

Whereas the ILU preconditioners from the Trilinos Ifpack package are in general inadequate,

especially for larger problems discretized by finer meshes, convergence of the ML-preconditioned

linear solves, and subsequently the non-linear solves, is observed for all test cases.
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